Some Inequalities for the Polar Derivative of Some Classes of Polynomials
Abstract
In this paper, we investigate an upper bound of the polar derivative of a polynomial of degree $n$ $$p(z)=(z-z_m)^{t_m} (z-z_{m-1})^{t_{m-1}}\cdots (z-z_0)^{t_0}(a_0+\sum\limits_{\nu=\mu} ^{n-(t_m+\cdots+t_0)} a_{\nu}z^\nu)$$ where zeros $z_0,\ldots,z_m$ are in $\{z:|z|<1\}$ and the remaining $n-(t_m+\cdots+t_0 )$ zeros are outside $\{z:|z|<k\}$ where $k \geq 1.$ Furthermore, we give a lower bound of this polynomial where zeros $z_0,\ldots,z_m$ are outside $\{z:|z|\leq k\}$ and the remaining $n-(t_m+\cdots+t_0 )$ zeros are in $\{z:|z|<k\}$ where $k\leq 1.$
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2018
- DOI:
- arXiv:
- arXiv:1804.10203
- Bibcode:
- 2018arXiv180410203A
- Keywords:
-
- Mathematics - Complex Variables;
- 30A10
- E-Print:
- 17 pages