On certain semigroups of full contractions of a finite chain
Abstract
Let $[n]=\{1,2,\ldots,n\}$ be a finite chain and let $\mathcal{T}_{n}$ be the semigroup of full transformations on $[n]$. Let $\mathcal{CT}_{n}=\{\alpha\in \mathcal{T}_{n}: (for ~all~x,y\in [n])~\left|x\alpha-y\alpha\right|\leq\left|x-y\right|\}$, then $\mathcal{CT}_{n}$ is a subsemigroup of $\mathcal{T}_{n}$. In this paper, we give a necessary and sufficient condition for an element to be regular and characterize all the Green's equivalences for the semigroup $\mathcal{CT}_{n}$. We further show that the semigroup $\mathcal{CT}_{n}$ is a left abundant semigroup.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2018
- DOI:
- arXiv:
- arXiv:1804.10057
- Bibcode:
- 2018arXiv180410057U
- Keywords:
-
- Mathematics - Group Theory;
- 20M
- E-Print:
- 10. arXiv admin note: text overlap with arXiv:1803.02146