On the degree of the $p$-torsion field of elliptic curves over $\mathbb{Q}_\ell$ for $\ell \neq p$
Abstract
Let $\ell$ and $p \geq 3$ be distinct prime numbers. Let $E/\mathbb{Q}_{\ell}$ be an elliptic curve with $p$-torsion module $E_p$. Let $\mathbb{Q}_{\ell}(E_p)$ be the $p$-torsion field of $E$. We provide a complete description of the degree of the extension $\mathbb{Q}_{\ell}(E_p)/\mathbb{Q}_{\ell}$. As a consequence, we obtain a recipe to determine the discriminant ideal of the extension $\mathbb{Q}_{\ell}(E_p)/\mathbb{Q}_\ell$ in terms of standard information on $E$.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2018
- DOI:
- 10.48550/arXiv.1804.07627
- arXiv:
- arXiv:1804.07627
- Bibcode:
- 2018arXiv180407627F
- Keywords:
-
- Mathematics - Number Theory
- E-Print:
- 36 pages