Gromov-Witten invariants of Calabi-Yau manifolds with two Kähler parameters
Abstract
We study the Gromov-Witten theory of $K_{\mathsf{P}^1\times\mathsf{P}^1}$ and some Calabi-Yau hypersurface in toric variety. We give a direct geometric proof of the holomorphic anomaly euqation for $K_{\mathsf{P}^1\times\mathsf{P}^1}$ in the form predicted by B-model physics. We also calculate the closed formula of genus one quasimap invariants of Calabi-Yau hypersurface in $\mathsf{P}^{m-1}\times\mathsf{P}^{n-1}$ after restricting second Kähler parameter to zero. By wall-crossing theorem between Gromov-Witten and quasimap invariants, we can obtain the genus one Gromov-Witten invariants.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2018
- DOI:
- arXiv:
- arXiv:1804.04399
- Bibcode:
- 2018arXiv180404399L
- Keywords:
-
- Mathematics - Algebraic Geometry
- E-Print:
- 40 pages. arXiv admin note: text overlap with arXiv:1702.06096, arXiv:1803.01409