Elliptic gradient estimates and Liouville theorems for a weighted nonlinear parabolic equation
Abstract
Let $(M^N, g, e^{-f}dv)$ be a complete smooth metric measure space with $\infty$-Bakry-Émery Ricci tensor bounded from below. We derive elliptic gradient estimates for positive solutions of a weighted nonlinear parabolic equation \begin{align*} \displaystyle \Big(\Delta_f - \frac{\partial}{\partial t}\Big) u(x,t) +q(x,t)u^\alpha(x,t) = 0, \end{align*} where $(x,t) \in M^N \times (-\infty, \infty)$ and $\alpha$ is an arbitrary constant. As Applications we prove a Liouville-type theorem for positive ancient solutions and Harnack-type inequalities for positive bounded solutions.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2018
- DOI:
- arXiv:
- arXiv:1804.01960
- Bibcode:
- 2018arXiv180401960A
- Keywords:
-
- Mathematics - Differential Geometry;
- 35K55;
- 35B53;
- 53C21;
- 58J38
- E-Print:
- 18 pages