Highly entangled tensors
Abstract
A geometric measure for the entanglement of a unit length tensor $T \in (\mathbb{C}^n)^{\otimes k}$ is given by $- 2 \log_2 ||T||_\sigma$, where $||.||_\sigma$ denotes the spectral norm. A simple induction gives an upper bound of $(k-1) \log_2(n)$ for the entanglement. We show the existence of tensors with entanglement larger than $k \log_2(n) - \log_2(k) - o(\log_2(k))$. Friedland and Kemp have similar results in the case of symmetric tensors. Our techniques give improvements in this case.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2018
- DOI:
- arXiv:
- arXiv:1803.09788
- Bibcode:
- 2018arXiv180309788D
- Keywords:
-
- Mathematics - Optimization and Control;
- Mathematics - Numerical Analysis;
- 15A69;
- 26B15;
- 47A30;
- 81P40
- E-Print:
- 13 pages, improved results and a section added on symmetric tensors