The Langlands parameter of a simple supercuspidal representation: Symplectic groups
Abstract
Let $\pi$ be a simple supercuspidal representation of the symplectic group $Sp_{2l}(F)$, over a $p$-adic field $F$. In this work, we explicitly compute the Rankin-Selberg $\gamma$-factor of rank-$1$ twists of $\pi$. We then completely determine the Langlands parameter of $\pi$, if $p \neq 2$. In the case that $F = \mathbb{Q}_2$, we give a conjectural description of the functorial lift of $\pi$, with which, using a recent work of Bushnell and Henniart, one can obtain its Langlands parameter.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2018
- DOI:
- arXiv:
- arXiv:1803.08881
- Bibcode:
- 2018arXiv180308881A
- Keywords:
-
- Mathematics - Representation Theory;
- 11S37;
- 22E50
- E-Print:
- 26 pages, corrected typos, revised introduction. Final version