A density result for homogeneous Sobolev spaces
Abstract
We show that in a bounded Gromov hyperbolic domain $\Omega$ smooth functions with bounded derivatives $C^\infty(\Omega)\cap W^{k,\infty}(\Omega)$ are dense in the homogeneous Sobolev spaces $L^{k,p}(\Omega)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2018
- DOI:
- arXiv:
- arXiv:1803.08715
- Bibcode:
- 2018arXiv180308715N
- Keywords:
-
- Mathematics - Functional Analysis;
- Mathematics - Classical Analysis and ODEs;
- 46E35
- E-Print:
- 30 pages