Remarks on recognizable subsets and local rank
Abstract
Given a monoid $(M,\varepsilon,\cdot )$ it is shown that a subset $A\subseteq M$ is recognizable in the sense of automata theory if and only if the $\varphi $-rank of $x=x$ is zero in the first-order theory $\operatorname{Th}(M,\varepsilon ,\cdot ,A)$, where $\varphi (x;u)$ is the formula $xu\in A$. In the case where $M$ is a finitely generated free monoid on a finite alphabet $\Sigma $, this gives a model-theoretic characterization of the regular languages over $\Sigma $. If $A$ is a regular language over $\Sigma $ then the $\varphi $-multiplicity of $x=x$ is the state complexity of $A$. Similar results holds for $\varphi' (x;u,v)$ given by $uxv\in A$, with the $\varphi' $-multiplicity now equal to the size of the syntactic monoid of $A$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2018
- DOI:
- arXiv:
- arXiv:1803.07234
- Bibcode:
- 2018arXiv180307234H
- Keywords:
-
- Mathematics - Logic;
- 03C65 (Primary);
- 68Q45;
- 68Q70;
- F.4.1;
- F.4.3