A Bernstein type theorem for minimal hypersurfaces via Gauss maps
Abstract
Let $M$ be an $n$-dimensional smooth oriented complete embedded minimal hypersurface in $\mathbb{R}^{n+1}$ with Euclidean volume growth. We show that if the image under the Gauss map of $M$ avoids some neighborhood of a half-equator, then $M$ must be an affine hyperplane.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2018
- DOI:
- arXiv:
- arXiv:1803.07132
- Bibcode:
- 2018arXiv180307132D
- Keywords:
-
- Mathematics - Differential Geometry
- E-Print:
- 14 pages