Hadamard powers of some positive matrices
Abstract
Positivity properties of the Hadamard powers of the matrix $\begin{bmatrix}1+x_ix_j\end{bmatrix}$ for distinct positive real numbers $x_1,\ldots,x_n$ and the matrix $\begin{bmatrix}|\cos((i-j)\pi/n)|\end{bmatrix}$ are studied. In particular, it is shown that $\begin{bmatrix}(1+x_ix_j)^r\end{bmatrix}$ is not positive semidefinite for any positive real number $r<n-2$ that is not an integer, and $\begin{bmatrix}|\cos((i-j)\pi/n)|^r\end{bmatrix}$ is positive semidefinite for every odd integer $n\ge 3$ and $n-3\le r<n-2.$
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2018
- DOI:
- arXiv:
- arXiv:1803.06803
- Bibcode:
- 2018arXiv180306803J
- Keywords:
-
- Mathematics - Classical Analysis and ODEs;
- Mathematics - Functional Analysis
- E-Print:
- Linear Algebra and its Applications, 528, (2017) 147-158