Spectral Picture For Rationally Multicyclic Subnormal Operators
Abstract
For a pure bounded rationally cyclic subnormal operator $S$ on a separable complex Hilbert space $\mathcal H,$ J. B. Conway and N. Elias (Analytic bounded point evaluations for spaces of rational functions, J. Functional Analysis, 117:1{24, 1993) showed that $clos(\sigma (S) \setminus \sigma_e (S)) = clos(Int (\sigma (S))).$ This paper examines the property for rationally multicyclic (N-cyclic) subnormal operators. We show: (1) There exists a 2-cyclic irreducible subnormal operator $S$ with $clos(\sigma (S) \setminus \sigma_e (S)) \neq clos(Int (\sigma (S))).$ (2) For a pure rationally $N-$cyclic subnormal operator $S$ on $\mathcal H$ with the minimal normal extension $M$ on $\mathcal K \supset \mathcal H,$ let $\mathcal K_m = clos (span\{(M^*)^kx: ~x\in\mathcal H,~0\le k \le m\}.$ Suppose $M |_{\mathcal K_{N-1}}$ is pure, then $clos(\sigma (S) \setminus \sigma_e (S)) = clos(Int (\sigma (S))).$
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2018
- DOI:
- 10.48550/arXiv.1803.05736
- arXiv:
- arXiv:1803.05736
- Bibcode:
- 2018arXiv180305736Y
- Keywords:
-
- Mathematics - Functional Analysis
- E-Print:
- 17 pages. arXiv admin note: text overlap with arXiv:1710.11265