On the fractional Schrödinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity
Abstract
We consider the fractional Schrödinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity $\varepsilon^{2s}M([u]_{s,A_\varepsilon}^2)(-\Delta)_{A_\varepsilon}^su + V(x)u =$ $|u|^{2_s^\ast-2}u + h(x,|u|^2)u,$ $\ \ x\in \mathbb{R}^N,$ where $ u(x) \rightarrow 0$ as $|x| \rightarrow \infty,$ and $(-\Delta)_{A_\varepsilon}^s$ is the fractional magnetic operator with $0<s<1$, $2_s^\ast = 2N/(N-2s),$ $M : \mathbb{R}^{+}_{0} \rightarrow \mathbb{R}^{+}$ is a continuous nondecreasing function, $V:\mathbb{R}^N \rightarrow \mathbb{R}^+_0,$ and $A: \mathbb{R}^N \rightarrow \mathbb{R}^N$ are the electric and the magnetic potential, respectively. By using the fractional version of the concentration compactness principle and variational methods, we show that the above problem: (i) has at least one solution provided that $\varepsilon < \mathcal {E}$; and (ii) for any $m^\ast \in \mathbb{N}$, has $m^\ast$ pairs of solutions if $\varepsilon < \mathcal {E}_{m^\ast}$, where $\mathcal {E}$ and $\mathcal {E}_{m^\ast}$ are sufficiently small positive numbers. Moreover, these solutions $u_\varepsilon \rightarrow 0$ as $\varepsilon \rightarrow 0$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2018
- DOI:
- arXiv:
- arXiv:1803.05694
- Bibcode:
- 2018arXiv180305694L
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 35J10;
- 35B99;
- 35J60;
- 47G20
- E-Print:
- Comput. Math. Appl 75:5 (2018), 1778-1794