Effects of localized spatial variations on the uniform persistence and spreading speeds of time periodic two species competition systems
Abstract
The current paper is devoted to the study of two species competition systems of the form \begin{equation*} \begin{cases} u_t(t,x)= \mathcal{A} u+u(a_1(t,x)-b_1(t,x)u-c_1(t,x)v),\quad x\in\RR\cr v_t(t,x)= \mathcal{A} v+ v(a_2(t,x)-b_2(t,x)u-c_2(t,x) v),\quad x\in\RR \end{cases} \end{equation*} where $\mathcal{A}u=u_{xx}$, or $(\mathcal{A}u)(t,x)=\int_{\RR}\kappa(y-x)u(t,y)dy-u(t,x)$ ($\kappa(\cdot)$ is a smooth non-negative convolution kernel supported on an interval centered at the origin), $a_i(t+T,x)=a_i(t,x)$, $b_i(t+T,x)=b_i(t,x)$, $c_i(t+T,x)=c_i(t,x)$, and $a_i$, $b_i$, and $c_i$ ($i=1,2$) are spatially homogeneous when $|x|\gg 1$, that is, $a_i(t,x)=a_i^0(t)$, $b_i(t,x)=b_i^0(t)$, $c_i(t,x)=c_i^0(t)$ for some $a_i^0(t)$, $b_i^0(t)$, $c_i^0(t)$, and $|x|\gg 1$. Such a system can be viewed as a time periodic competition system subject to certain localized spatial variations. We, in particular, study the effects of localized spatial variations on the uniform persistence and spreading speeds of the system. Among others, it is proved that any localized spatial variation does not affect the uniform persistence of the system, does not slow down the spreading speeds of the system, and under some linear determinant condition, does not speed up the spreading speeds.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2018
- DOI:
- arXiv:
- arXiv:1803.05322
- Bibcode:
- 2018arXiv180305322K
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 35K58;
- 45G15;
- 92D25
- E-Print:
- Communications on Pure and Applied Analysis, July 2019, 18(4): 1613-1636