Existence of ground state solution and concentration of maxima for a class of indefinite variational problems
Abstract
In this paper we study the existence of ground state solution and concentration of maxima for a class of strongly indefinite problem like $$ \left\{\begin{array}{l} -\Delta u+V(x)u=A(\epsilon x)f(u) \quad \mbox{in} \quad \R^{N}, \\ u\in H^{1}(\R^{N}), \end{array}\right. \eqno{(P)_{\epsilon}} $$ where $N \geq 1$, $\epsilon$ is a positive parameter, $f: \mathbb{R} \to \mathbb{R}$ is a continuous function with subcritical growth and $V,A: \mathbb{R}^{N} \to \mathbb{R}$ are continuous functions verifying some technical conditions. Here $V$ is a $\mathbb{Z}^N$-periodic function, $0 \not\in \sigma(-\Delta + V)$, the spectrum of $-\Delta +V$, and $$ 0 < \inf_{x \in \R^{N}}A(x)\leq \displaystyle\lim_{|x|\rightarrow+\infty}A(x)<\sup_{x \in \R^{N}}A(x). $$
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2018
- DOI:
- 10.48550/arXiv.1801.06872
- arXiv:
- arXiv:1801.06872
- Bibcode:
- 2018arXiv180106872A
- Keywords:
-
- Mathematics - Analysis of PDEs
- E-Print:
- In this version we correct some misprints and change the title of the manuscript. The final version this manuscript will be published in Communication on Pure &