The genus of a random bipartite graph
Abstract
Archdeacon and Grable (1995) proved that the genus of the random graph $G\in\mathcal{G}_{n,p}$ is almost surely close to $pn^2/12$ if $p=p(n)\geq3(\ln n)^2n^{-1/2}$. In this paper we prove an analogous result for random bipartite graphs in $\mathcal{G}_{n_1,n_2,p}$. If $n_1\ge n_2 \gg 1$, phase transitions occur for every positive integer $i$ when $p=\Theta((n_1n_2)^{-\frac{i}{2i+1}})$. A different behaviour is exhibited when one of the bipartite parts has constant size, $n_1\gg1$ and $n_2$ is a constant. In that case, phase transitions occur when $p=\Theta(n_1^{-1/2})$ and when $p=\Theta(n_1^{-1/3})$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2017
- DOI:
- arXiv:
- arXiv:1712.09989
- Bibcode:
- 2017arXiv171209989J
- Keywords:
-
- Mathematics - Combinatorics;
- 05C10;
- 57M15
- E-Print:
- 19 pages