On Pseudo-Einstein Real Hypersurfaces
Abstract
Let $M$ be a real hypersurface of a complex space form $M^n(c)$, $c\neq0$, $n\geq 3$. We show that the Ricci tensor $S$ of $M$ satisfies $S(X,Y)=ag(X,Y)$ for any vector fields $X$ and $Y$ on the holomorphic distribution, $a$ being a constant, if and only if $M$ is a pseudo-Einstein real hypersurface.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2017
- DOI:
- arXiv:
- arXiv:1712.07360
- Bibcode:
- 2017arXiv171207360K
- Keywords:
-
- Mathematics - Differential Geometry;
- 53C25;
- 53B25