Light propagation through one-dimensional interacting open quantum systems
Abstract
We apply the quantum Langevin equations approach to study nonlinear light propagation through one-dimensional interacting open quantum lattice models. We write a large set of quantum Langevin equations of lattice operators obtained after integrating out the light fields and use them to derive nonequilibrium features of the lattice models. We first consider a Heisenberg-type interacting spin-1/2 chain with nearest-neighbor coupling. The transient and steady-state transport properties of an incoming monochromatic laser light are calculated for this model. We find how the local features of the spin chain and the chain length dependence of light transport coefficient evolve with an increasing power of the incident light. The steady-state light transmission coefficient at a higher power depends nonmonotonically on the interaction in a finite chain. While the nonlinear light transmission in our studied model seems to be ballistic in the absence of interaction and for a high interaction, it shows an apparent system-size dependence at intermediate interactions. Later, we extend this method to the long-range interaction between spins of the driven-dissipative lattice model and to incorporate various losses typical in many atomic and solid-state systems.
- Publication:
-
Physical Review A
- Pub Date:
- August 2018
- DOI:
- arXiv:
- arXiv:1712.04474
- Bibcode:
- 2018PhRvA..98b3802M
- Keywords:
-
- Quantum Physics;
- Condensed Matter - Mesoscale and Nanoscale Physics;
- Condensed Matter - Statistical Mechanics
- E-Print:
- 18 pages, 11 figures