A new result for global existence and boundedness of solutions to a parabolic--parabolic Keller--Segel system with logistic source
Abstract
We consider the following fully parabolic Keller--Segel system with logistic source $$ \left\{\begin{array}{ll} u_t=\Delta u-\chi\nabla\cdot(u\nabla v)+ au-\mu u^2,\quad x\in \Omega, t>0, \disp{v_t=\Delta v- v +u},\quad x\in \Omega, t>0, \end{array}\right.\eqno(KS) $$ over a bounded domain $\Omega\subset\mathbb{R}^N(N\geq1)$, with smooth boundary $\partial\Omega$, the parameters $a\in \mathbb{R}, \mu>0, \chi>0$. It is proved that if $\mu>0$, then $(KS)$ admits a global weak solution, while if $\mu>\frac{(N-2)_{+}}{N}\chi C^{\frac{1}{\frac{N}{2}+1}}_{\frac{N}{2}+1}$, then $(KS)$ possesses a global classical solution which is bounded, where $C^{\frac{1}{\frac{N} {2}+1}}_{\frac{N}{2}+1}$ is a positive constant which is corresponding to the maximal Sobolev regularity. Apart from this, we also show that if $a = 0$ and $\mu>\frac{(N-2)_{+}}{N}\chi C^{\frac{1}{\frac{N}{2}+1}}_{\frac{N}{2}+1}$, then both $u(\cdot, t)$ and $v(\cdot, t)$ decay to zero with respect to the norm in $L^\infty(\Omega)$ as $t\rightarrow\infty$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2017
- DOI:
- 10.48550/arXiv.1712.00906
- arXiv:
- arXiv:1712.00906
- Bibcode:
- 2017arXiv171200906Z
- Keywords:
-
- Mathematics - Analysis of PDEs