Photoinduced half-integer quantized conductance plateaus in topological-insulator/superconductor heterostructures
Abstract
The past few years have witnessed increased attention to the quest for Majorana-like excitations in the condensed matter community. As a promising candidate in this race, the one-dimensional chiral Majorana edge mode (CMEM) in topological insulator-superconductor heterostructures has gathered renewed interests after an experimental breakthrough [Q. L. He et al., Science 357, 294 (2017), 10.1126/science.aag2792]. In this work, we study computationally the quantum transport of topological insulator-superconductor hybrid devices subject to time-periodic modulation. We report half-integer quantized conductance plateaus at 1/2 e/2h and 3/2 e/2h upon applying the so-called sum rule in the theory of quantum transport in Floquet topological matter. In particular, in a photoinduced topological superconductor sandwiched between two Floquet Chern insulators, it is found that for each Floquet sideband, the CMEM admits equal probability for normal transmission and local Andreev reflection over a wide range of parameter regimes, yielding half-integer quantized plateaus that resist static and time-periodic disorder. While it is well-established that periodic driving fields can simultaneously create and manipulate multiple pairs of Majorana bound states, their detection scheme remains elusive, in part due to their being neutral excitations. Therefore the 3/2 e/2h plateau indicates the possibility to verify the generation of multiple pairs of photoinduced CMEMs via transport measurements. The robust and half-quantized conductance plateaus due to CMEMs are both fascinating and subtle because they only emerge after a summation over contributions from all Floquet sidebands. Our work may add insights into the transport properties of Floquet topological systems and stimulate further studies on the optical control of topological superconductivity.
- Publication:
-
Physical Review B
- Pub Date:
- April 2018
- DOI:
- 10.1103/PhysRevB.97.165142
- arXiv:
- arXiv:1711.09540
- Bibcode:
- 2018PhRvB..97p5142Y
- Keywords:
-
- Condensed Matter - Mesoscale and Nanoscale Physics;
- Condensed Matter - Superconductivity;
- Quantum Physics
- E-Print:
- 13 pages, 8 figures