Deep Learning for real-time gravitational wave detection and parameter estimation: Results with Advanced LIGO data
Abstract
The recent Nobel-prize-winning detections of gravitational waves from merging black holes and the subsequent detection of the collision of two neutron stars in coincidence with electromagnetic observations have inaugurated a new era of multimessenger astrophysics. To enhance the scope of this emergent field of science, we pioneered the use of deep learning with convolutional neural networks, that take time-series inputs, for rapid detection and characterization of gravitational wave signals. This approach, Deep Filtering, was initially demonstrated using simulated LIGO noise. In this article, we present the extension of Deep Filtering using real data from LIGO, for both detection and parameter estimation of gravitational waves from binary black hole mergers using continuous data streams from multiple LIGO detectors. We demonstrate for the first time that machine learning can detect and estimate the true parameters of real events observed by LIGO. Our results show that Deep Filtering achieves similar sensitivities and lower errors compared to matched-filtering while being far more computationally efficient and more resilient to glitches, allowing real-time processing of weak time-series signals in non-stationary non-Gaussian noise with minimal resources, and also enables the detection of new classes of gravitational wave sources that may go unnoticed with existing detection algorithms. This unified framework for data analysis is ideally suited to enable coincident detection campaigns of gravitational waves and their multimessenger counterparts in real-time.
- Publication:
-
Physics Letters B
- Pub Date:
- March 2018
- DOI:
- 10.1016/j.physletb.2017.12.053
- arXiv:
- arXiv:1711.03121
- Bibcode:
- 2018PhLB..778...64G
- Keywords:
-
- Deep Learning;
- Convolutional neural networks;
- Gravitational waves;
- LIGO;
- Time-series signal processing;
- Classification and regression;
- General Relativity and Quantum Cosmology;
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Instrumentation and Methods for Astrophysics;
- Computer Science - Machine Learning;
- Computer Science - Neural and Evolutionary Computing
- E-Print:
- 6 pages, 7 figures