A note on the extended Bruinier-Kohnen conjecture
Abstract
Let $f$ be a cuspform of integral half-weight $k+1/2$, whose Fourier coefficients $a(n)$ not necessarily real. We verify partially an extension of a conjecture of Bruinier and Kohnen on the equi-distribution of the signs of $a(n)$ (when are real), conjectured by the first author in \cite{Amri2} for the sequence $\{a(tp^{2\nu})\}_{p,\text{prime}}$, where $\nu$ an odd positive integer and $t$ a square-free integer.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2017
- DOI:
- arXiv:
- arXiv:1711.02431
- Bibcode:
- 2017arXiv171102431A
- Keywords:
-
- Mathematics - Number Theory
- E-Print:
- Funct. Approx. Comment. Math.(2019)