A Max-Cut approximation using a graph based MBO scheme
Abstract
The Max-Cut problem is a well known combinatorial optimization problem. In this paper we describe a fast approximation method. Given a graph G, we want to find a cut whose size is maximal among all possible cuts. A cut is a partition of the vertex set of G into two disjoint subsets. For an unweighted graph, the size of the cut is the number of edges that have one vertex on either side of the partition; we also consider a weighted version of the problem where each edge contributes a nonnegative weight to the cut. We introduce the signless Ginzburg-Landau functional and prove that this functional Gamma-converges to a Max-Cut objective functional. We approximately minimize this functional using a graph based signless Merriman-Bence-Osher scheme, which uses a signless Laplacian. We show experimentally that on some classes of graphs the resulting algorithm produces more accurate maximum cut approximations than the current state-of-the-art approximation algorithm. One of our methods of minimizing the functional results in an algorithm with a time complexity of O(|E|), where |E| is the total number of edges on G.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2017
- DOI:
- arXiv:
- arXiv:1711.02419
- Bibcode:
- 2017arXiv171102419K
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 05C85;
- 35R02;
- 35Q56;
- 49K15;
- 68R10
- E-Print:
- 38 pages, 16 figures