On extremal cacti with respect to the edge Szeged index and edge-vertex Szeged index
Abstract
The edge Szeged index and edge-vertex Szeged index of a graph are defined as $Sz_{e}(G)=\sum\limits_{uv\in E(G)}m_{u}(uv|G)m_{v}(uv|G)$ and $Sz_{ev}(G)=\frac{1}{2} \sum\limits_{uv \in E(G)}[n_{u}(uv|G)m_{v}(uv|G)+n_{v}(uv|G)m_{u}(uv|G)],$ respectively, where $m_{u}(uv|G)$ (resp., $m_{v}(uv|G)$) is the number of edges whose distance to vertex $u$ (resp., $v$) is smaller than the distance to vertex $v$ (resp., $u$), and $n_{u}(uv|G)$ (resp., $n_{v}(uv|G)$) is the number of vertices whose distance to vertex $u$ (resp., $v$) is smaller than the distance to vertex $v$ (resp., $u$), respectively. A cactus is a graph in which any two cycles have at most one common vertex. In this paper, the lower bounds of edge Szeged index and edge-vertex Szeged index for cacti with order $n$ and $k$ cycles are determined, and all the graphs that achieve the lower bounds are identified.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2017
- DOI:
- arXiv:
- arXiv:1711.02394
- Bibcode:
- 2017arXiv171102394H
- Keywords:
-
- Mathematics - Combinatorics
- E-Print:
- 12 pages, 5 figures