Reversible DNA codes over a family of non-chain rings $R_{k,s}$
Abstract
In this paper, we solve the reversibility problem for DNA codes over the non-chain ring $R_{k,s}=\mathbb{F}_{4^{2k}}[u_1,...,u_{s}]/< u_1^2-u_1,..., u_s^2-u_s>$. We define an automorphism $\theta$ over $R_{k,s}$ which help us both find the idempotent decomposition of $R_{k,s}$ and solve the reversibility problem via skew cyclic codes. Moreover, we introduce a generalized Gray map that preserves DNA reversibility.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2017
- DOI:
- arXiv:
- arXiv:1711.02385
- Bibcode:
- 2017arXiv171102385G
- Keywords:
-
- Mathematics - Combinatorics;
- Computer Science - Information Theory;
- 94B15;
- 94B05;
- 92D20
- E-Print:
- 11 pages