Congruences modulo powers of 5 for $k$-colored partitions
Abstract
Let $p_{-k}(n)$ enumerate the number of $k$-colored partitions of $n$. In this paper, we establish some infinite families of congruences modulo 25 for $k$-colored partitions. Furthermore, we prove some infinite families of Ramanujan-type congruences modulo powers of 5 for $p_{-k}(n)$ with $k=2, 6$, and $7$. For example, for all integers $n\geq0$ and $\alpha\geq1$, we prove that \begin{align*} p_{-2}\left(5^{2\alpha-1}n+\dfrac{7\times5^{2\alpha-1}+1}{12}\right) &\equiv0\pmod{5^{\alpha}} \end{align*} and \begin{align*} p_{-2}\left(5^{2\alpha}n+\dfrac{11\times5^{2\alpha}+1}{12}\right) &\equiv0\pmod{5^{\alpha+1}}. \end{align*}
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2017
- DOI:
- arXiv:
- arXiv:1711.02325
- Bibcode:
- 2017arXiv171102325T
- Keywords:
-
- Mathematics - Combinatorics;
- 05A17;
- 11P83
- E-Print:
- 15 pages, submitted to J. Number Theory