Global Solution for the incompressible Navier-Stokes equations] { Global Solution for the incompressible Navier-Stokes equations with a class of large data in $BMO^{-1}(\mathbb{R}^3)$
Abstract
In this paper, we shall establish the global well-posedness, the space-time analyticity of the Navier-Stokes equations for a class of large periodic data $u_0 \in BMO^{-1}(\mathbb{R}^3)$. This improves the classical result of Koch \& Tataru \cite{koch-tataru}, for the global well-posedness with small initial data $u_0 \in BMO^{-1}(\mathbb{R}^n)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2017
- DOI:
- arXiv:
- arXiv:1711.02286
- Bibcode:
- 2017arXiv171102286Y
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 35K55