Essential norms of weighted composition operators between Lipschitz spaces of arbitrary order
Abstract
Let $\mathbb{D}$ denote the unit disk of $\mathbb{C}$ and let $\Lambda^\alpha(\mathbb{D})$ denote the scale of holomorphic Lipschitz spaces extended to all $\alpha\in\mathbb{R}$. For arbitrary $\alpha, \beta\in\mathbb{R}$, we characterize the bounded weighted composition operators from $\Lambda^\beta(\mathbb{D})$ into $\Lambda^\alpha(\mathbb{D})$ and estimate their essential norms.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2017
- DOI:
- arXiv:
- arXiv:1711.02024
- Bibcode:
- 2017arXiv171102024D
- Keywords:
-
- Mathematics - Complex Variables
- E-Print:
- 9 pages