Lattice paths inside a table, II
Abstract
Consider an $m\times n$ table $T$ and latices paths $\nu_1,\ldots,\nu_k$ in $T$ such that each step $\nu_{i+1}-\nu_i=(1,1)$, $(1,0)$ or $(1,-1)$. The number of paths from the $(1,i)$-blank (resp. first column) to the $(s,t)$-blank is denoted by $\mathcal{D}^i(s,t)$ (resp. $\mathcal{D}(s,t)$). Also, the number of all paths form the first column to the las column is denoted by $\mathcal{I}_m(n)$. We give explicit formulas for the numbers $\mathcal{D}^1(s,t)$ and $\mathcal{D}(s,t)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2017
- DOI:
- arXiv:
- arXiv:1711.01924
- Bibcode:
- 2017arXiv171101924Y
- Keywords:
-
- Mathematics - General Mathematics