Shadow Tomography of Quantum States
Abstract
We introduce the problem of *shadow tomography*: given an unknown $D$-dimensional quantum mixed state $\rho$, as well as known two-outcome measurements $E_{1},\ldots,E_{M}$, estimate the probability that $E_{i}$ accepts $\rho$, to within additive error $\varepsilon$, for each of the $M$ measurements. How many copies of $\rho$ are needed to achieve this, with high probability? Surprisingly, we give a procedure that solves the problem by measuring only $\widetilde{O}\left( \varepsilon^{-4}\cdot\log^{4} M\cdot\log D\right)$ copies. This means, for example, that we can learn the behavior of an arbitrary $n$-qubit state, on all accepting/rejecting circuits of some fixed polynomial size, by measuring only $n^{O\left( 1\right)}$ copies of the state. This resolves an open problem of the author, which arose from his work on private-key quantum money schemes, but which also has applications to quantum copy-protected software, quantum advice, and quantum one-way communication. Recently, building on this work, Brandão et al. have given a different approach to shadow tomography using semidefinite programming, which achieves a savings in computation time.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2017
- DOI:
- 10.48550/arXiv.1711.01053
- arXiv:
- arXiv:1711.01053
- Bibcode:
- 2017arXiv171101053A
- Keywords:
-
- Quantum Physics;
- Computer Science - Computational Complexity
- E-Print:
- 29 pages, extended abstract appeared in Proceedings of STOC'2018, revised to give slightly better upper bound (1/eps^4 rather than 1/eps^5) and lower bounds with explicit dependence on the dimension D