Density of Analytic Polynomials in Abstract Hardy Spaces
Abstract
Let $X$ be a separable Banach function space on the unit circle $\mathbb{T}$ and $H[X]$ be the abstract Hardy space built upon $X$. We show that the set of analytic polynomials is dense in $H[X]$ if the Hardy-Littlewood maximal operator is bounded on the associate space $X'$. This result is specified to the case of variable Lebesgue spaces.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2017
- DOI:
- 10.48550/arXiv.1710.10078
- arXiv:
- arXiv:1710.10078
- Bibcode:
- 2017arXiv171010078K
- Keywords:
-
- Mathematics - Classical Analysis and ODEs;
- 46E30;
- 42A10
- E-Print:
- To appear in Commentationes Mathematicae (Annales Societatis Mathematicae Polonae)