The Brown-Peterson spectrum is not $\mathbb{E}_{2(p^2+2)}$ at odd primes
Abstract
We show that the odd-primary Brown-Peterson spectrum $\mathrm{BP}$ does not admit the structure of an $\mathbb{E}_{2(p^2+2)}$ ring spectrum and that there can be no map $\mathrm{MU} \to \mathrm{BP}$ of $\mathbb{E}_{2p+3}$ ring spectra. We also prove the same results for truncated Brown-Peterson spectra $\mathrm{BP} \langle n \rangle$ of height $n \geq 4$. This extends results of Lawson at the prime $2$.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2017
- DOI:
- arXiv:
- arXiv:1710.09822
- Bibcode:
- 2017arXiv171009822S
- Keywords:
-
- Mathematics - Algebraic Topology;
- 55P43
- E-Print:
- v2: Errors corrected and exposition improved. 28 pages