Ill-posedness for the Hamilton-Jacobi equation in Besov spaces $B^0_{\infty,q}$
Abstract
In this paper, we study the Cauchy problem for the following Hamilton-Jacobi equation \bbal\bca \pa_tu-\De u=|\na u|^2,\quad t>0, \ x\in \R^d,\\ u(0,x)=u_0, \quad \quad x\in \R^d. \eca\end{align*} We show that the solution map in Besov spaces $B^0_{\infty,q}(\R^d),1\leq q\leq \infty$ is discontinuous at origin. That is, we can construct a sequence initial data $\{u^N_0\}$ satisfying $||u^N_0||_{B^0_{\infty,q}(\R^d)}\rightarrow 0, \ N\rightarrow \infty$ such that the corresponding solution $\{u^N\}$ with $u^N(0)=u^N_0$ satisfies \bbal ||u^N||_{L^\infty_T(B^0_{\infty,q}(\R^d))}\geq c_0, \qquad \forall \ T>0, \quad N\gg 1, \end{align*} with a constant $c_0>0$ independent of $N$.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2017
- DOI:
- arXiv:
- arXiv:1710.07762
- Bibcode:
- 2017arXiv171007762L
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 35F21
- E-Print:
- 15 pages