Global uniqueness for the semilinear fractional Schrödinger equation
Abstract
We study global uniqueness in an inverse problem for the fractional semilinear Schrödinger equation $(-\Delta)^{s}u+q(x,u)=0$ with $s\in (0,1)$. We show that an unknown function $q(x,u)$ can be uniquely determined by the Cauchy data set. In particular, this result holds for any space dimension greater than or equal to $2$. Moreover, we demonstrate the comparison principle and provide a $L^\infty$ estimate for this nonlocal equation under appropriate regularity assumptions.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2017
- DOI:
- 10.48550/arXiv.1710.07404
- arXiv:
- arXiv:1710.07404
- Bibcode:
- 2017arXiv171007404L
- Keywords:
-
- Mathematics - Analysis of PDEs