Payne-Polya-Weinberger, Hile-Protter and Yang's inequalities for Dirichlet Laplace eigenvalues on integer lattices
Abstract
In this paper, we prove some analogues of Payne-Polya-Weinberger, Hile-Protter and Yang's inequalities for Dirichlet (discrete) Laplace eigenvalues on any subset in the integer lattice $\Z^n.$ This partially answers a question posed by Chung and Oden.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2017
- DOI:
- 10.48550/arXiv.1710.05799
- arXiv:
- arXiv:1710.05799
- Bibcode:
- 2017arXiv171005799H
- Keywords:
-
- Mathematics - Differential Geometry