On the action of the Steenrod-Milnor operations on the invariants of the general linear groups
Abstract
Let $p$ be an odd prime number. Denote by $GL_n = GL(n,\mathbb F_p)$ the general linear group over the prime field $\mathbb F_p$. Each subgroup of $GL_n$ acts on the algebra $P_n=E(x_1,\ldots,x_n)\otimes \mathbb F_p(y_1,\ldots,y_n)$ in the usual manner. We grade $P_n$ by assigning $\dim x_i=1$ and $\dim y_i=2.$ This algebra is a module over the mod $p$ Steenrod algebra $\mathcal A_p$. The purpose of the paper is to compute the action of the Steenrod-Milnor operations on the generators of $P_2^{GL_2}$. More precisely, we explicitly determine the action of $St^{(i,j)}$ on the Dickson invariants $Q_{2,0}$ and $Q_{2,1}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2017
- DOI:
- arXiv:
- arXiv:1710.05326
- Bibcode:
- 2017arXiv171005326H
- Keywords:
-
- Mathematics - Algebraic Topology;
- Primary 55S10;
- Secondary 55S05
- E-Print:
- 7 pages