Jordan Decompositions of cocenters of reductive $p$-adic groups
Abstract
Cocenters of Hecke algebras $\mathcal H$ play an important role in studying mod $\ell$ or $\mathbb C$ harmonic analysis on connected $p$-adic reductive groups. On the other hand, the depth $r$ Hecke algebra $\mathcal H_{r^+}$ is well suited to study depth $r$ smooth representations. In this paper, we study depth $r$ rigid cocenters $\overline{\mathcal H}^{\mathrm{rig}}_{r^+}$ of a connected reductive $p$-adic group over rings of characteristic zero or $\ell\neq p$. More precisely, under some mild hypotheses, we establish a Jordan decomposition of the depth $r$ rigid cocenter, hence find an explicit basis of $\overline{\mathcal H}^{\mathrm{rig}}_{r^+}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2017
- DOI:
- 10.48550/arXiv.1710.04327
- arXiv:
- arXiv:1710.04327
- Bibcode:
- 2017arXiv171004327H
- Keywords:
-
- Mathematics - Representation Theory;
- 22E50;
- 11F70
- E-Print:
- 29 pages