The EKR property for flag pure simplicial complexes without boundary
Abstract
We prove that the family of facets of a pure simplicial complex of dimension up to three satisfies the Erdős-Ko-Rado property whenever it is flag and has no boundary ridges. We conjecture the same to be true in arbitrary dimension and give evidence for this conjecture. Our motivation is that complexes with these two properties include flag pseudo-manifolds and cluster complexes.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2017
- DOI:
- arXiv:
- arXiv:1710.02518
- Bibcode:
- 2017arXiv171002518O
- Keywords:
-
- Mathematics - Combinatorics;
- 05E45 (Primary);
- 05D05;
- 05C35 (Secondary)
- E-Print:
- 22 pages, v2: modified title and presentation, updated references, results unchanged