Do τ lepton branching fractions obey Benford's Law?
Abstract
According to Benford's law, the most significant digit in many datasets is not uniformly distributed, but obeys a well defined power law distribution with smaller digits appearing more often. Among one of the myriad particle physics datasets available, we find that the leading decimal digit for the τ lepton branching fraction shows marginal disagreement with the logarithmic behavior expected from the Benford distribution. We quantify the deviation from Benford's law using a χ2 function valid for binomial data, and obtain a χ2 value of 16.9 for nine degrees of freedom, which gives a p-value of about 5%, corresponding to a 1.6 σ disagreement. We also checked that the disagreement persists under scaling the branching fractions, as well as by redoing the analysis in a numerical system with a base different from 10. Among all the digits, '9' shows the largest discrepancy with an excess of 4 σ. This discrepancy is because the digit '9' is repeated for three distinct groups of correlated modes, with each group having a frequency of two or three, leading to double-counting. If we count each group of correlated modes only once, the discrepancy for this digit also disappears and we get pristine agreement with Benford distribution.
- Publication:
-
Physica A Statistical Mechanics and its Applications
- Pub Date:
- September 2018
- DOI:
- arXiv:
- arXiv:1709.09823
- Bibcode:
- 2018PhyA..506..919D
- Keywords:
-
- Physics - Physics and Society;
- High Energy Physics - Experiment;
- Physics - Data Analysis;
- Statistics and Probability
- E-Print:
- 8 pages, 6 figures