Wave-induced vortex recoil and nonlinear refraction
Abstract
When a vortex refracts surface waves, the momentum flux carried by the waves changes direction and the waves induce a reaction force on the vortex. We study experimentally the resulting vortex distortion. Incoming surface gravity waves impinge on a steady vortex of velocity U0 driven magnetohydrodynamically at the bottom of a fluid layer. The waves induce a shift of the vortex center in the direction transverse to wave propagation, together with a decrease in surface vorticity. We interpret these two phenomena in the framework introduced by Craik and Leibovich [A. D. D. Craik and S. Leibovich, J. Fluid Mech. 73, 401 (1976), 10.1017/S0022112076001420]: We identify the dimensionless Stokes drift S =Us/U0 as the relevant control parameter, Us being the Stokes drift velocity of the waves. We propose a simple vortex line model that indicates that the shift of the vortex center originates from a balance between vorticity advection by the Stokes drift and self-advection of the vortex. The decrease in surface vorticity is interpreted as a consequence of vorticity expulsion by the fast Stokes drift, which confines it at depth. This purely hydrodynamic process is analogous to the magnetohydrodynamic expulsion of a magnetic field by a rapidly moving conductor through the electromagnetic skin effect. We study vorticity expulsion in the limit of fast Stokes drift and deduce that the surface vorticity decreases as 1 /S , a prediction that is compatible with the experimental data. Such wave-induced vortex distortions have important consequences for the nonlinear regime of wave refraction: The refraction angle rapidly decreases with wave intensity.
- Publication:
-
Physical Review Fluids
- Pub Date:
- September 2017
- DOI:
- arXiv:
- arXiv:1709.08912
- Bibcode:
- 2017PhRvF...2i4701H
- Keywords:
-
- Physics - Fluid Dynamics
- E-Print:
- 13 pages, 4 figures