On the density of intermediate \beta-shifts of finite type
Abstract
We determine the structure of the set of intermediate $\beta$-shifts of finite type. Specifically, we show that this set is dense in the parameter space $\Delta = \{ (\beta, \alpha) \in \mathbb{R}^{2} \colon \beta \in (1, 2) \; \text{and} \; 0 \leq \alpha \leq 2 - \beta\}$. This generalises the classical result of Parry from 1960 for greedy and (normalised) lazy $\beta$-shifts.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2017
- DOI:
- arXiv:
- arXiv:1709.08035
- Bibcode:
- 2017arXiv170908035L
- Keywords:
-
- Mathematics - Dynamical Systems;
- Mathematics - Number Theory;
- Primary: 37E05;
- 37B10;
- Secondary: 11A67;
- 11R06
- E-Print:
- 6 pages