On the stability of flat complex vector bundles over parallelizable manifolds
Abstract
We investigate the flat holomorphic vector bundles over compact complex parallelizable manifolds G / Γ, where G is a complex connected Lie group and Γ is a cocompact lattice in it. The main result proved here is a structure theorem for flat holomorphic vector bundles Eρ associated with any irreducible representation ρ : Γ ⟶GL (r , C). More precisely, we prove that Eρ is holomorphically isomorphic to a vector bundle of the form E⊕n, where E is a stable vector bundle. All the rational Chern classes of E vanish, in particular, its degree is zero.
We deduce a stability result for flat holomorphic vector bundles Eρ of rank 2 over G / Γ. If an irreducible representation ρ : Γ ⟶GL (2 , C) satisfies the condition that the induced homomorphism Γ ⟶ PGL (2 , C) does not extend to a homomorphism from G, then Eρ is proved to be stable. Nous en déduisons un résultat de stabilité concernant les fibrés holomorphes plats Eρ de rang 2 sur les quotients G / Γ. Si ρ : Γ ⟶GL (2 , C) est une représentation irréductible telle que le morphisme induit ρ' : Γ ⟶ PGL (2 , C) ne s'étend pas à G, alors Eρ est stable.- Publication:
-
Comptes Rendus Mathematique
- Pub Date:
- October 2018
- DOI:
- arXiv:
- arXiv:1709.05951
- Bibcode:
- 2018CRMat.356.1030B
- Keywords:
-
- Mathematics - Differential Geometry;
- Mathematics - Algebraic Geometry;
- 53B21;
- 53C56;
- 53A55
- E-Print:
- Comptes Rendus Math\'ematique (to appear)