Asymptotic behaviour of the Bessel heat kernels
Abstract
We consider Dirichlet heat kernel $p_a^{(\mu)}(t,x,y)$ for the Bessel differential operator $L^{(\mu)}=\frac{d^2}{dx^2}+\frac{2\mu+1}{2x}$, $\mu\in\mathbb{R}$, in half-line $(a,\infty)$, $a>0$, and provide its asymptotic expansions for $xy/t\rightarrow\infty$.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2017
- DOI:
- arXiv:
- arXiv:1709.05796
- Bibcode:
- 2017arXiv170905796B
- Keywords:
-
- Mathematics - Analysis of PDEs
- E-Print:
- 19 pages