Littlewood-Richardson coefficients via mirror symmetry for cluster varieties
Abstract
I prove that the full Fock-Goncharov conjecture holds for $\mathrm{Conf}_3^\times(\widetilde{\mathcal{F}\hspace{-1.6pt}\ell})$-- the configuration space of triples of decorated flags in generic position. As a key ingredient of this proof, I exhibit a maximal green sequence for the quiver of the initial seed. I compute the Landau-Ginzburg potential $W$ on $\mathrm{Conf}_3^\times(\widetilde{\mathcal{F}\hspace{-1.6pt}\ell})^\vee$ associated to the partial minimal model $\mathrm{Conf}_3^\times(\widetilde{\mathcal{F}\hspace{-1.6pt}\ell}) \subset \mathrm{Conf}_3(\widetilde{\mathcal{F}\hspace{-1.6pt}\ell})$. The integral points of the associated "cone" ${\Xi:=\left\{W^T \geq 0\right\} \subset \mathrm{Conf}_3^\times(\widetilde{\mathcal{F}\hspace{-1.6pt}\ell})^\vee\left({\mathbb{R}^T}\right)}$ parametrize a basis for $\mathcal{O}\left(\mathrm{Conf}_3(\widetilde{\mathcal{F}\hspace{-1.6pt}\ell})\right) = \bigoplus \left(V_\alpha \otimes V_\beta \otimes V_\gamma \right)^G$ and encode the Littlewood-Richardson coefficients $c^\gamma_{\alpha \beta}$. In the initial seed, the inequalities defining $\Xi$ are exactly Zelevinsky's tail positivity conditions. I exhibit a unimodular $p^*$ map that identifies $W$ with the potential of Goncharov-Shen on $\mathrm{Conf}_3^\times(\widetilde{\mathcal{F}\hspace{-1.6pt}\ell})$ and $\Xi$ with the Knutson-Tao hive cone.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2017
- DOI:
- arXiv:
- arXiv:1709.05776
- Bibcode:
- 2017arXiv170905776M
- Keywords:
-
- Mathematics - Algebraic Geometry;
- Mathematics - Combinatorics;
- Mathematics - Representation Theory
- E-Print:
- 51 pages, Many of the proofs are lifted from [Mag15]. See Remark 3. To appear in P. Lond. Math. Soc