Evaluation modules for quantum toroidal ${\mathfrak{gl}}_n$ algebras
Abstract
The affine evaluation map is a surjective homomorphism from the quantum toroidal ${\mathfrak {gl}}_n$ algebra ${\mathcal E}'_n(q_1,q_2,q_3)$ to the quantum affine algebra $U'_q\widehat{\mathfrak {gl}}_n$ at level $\kappa$ completed with respect to the homogeneous grading, where $q_2=q^2$ and $q_3^n=\kappa^2$. We discuss ${\mathcal E}'_n(q_1,q_2,q_3)$ evaluation modules. We give highest weights of evaluation highest weight modules. We also obtain the decomposition of the evaluation Wakimoto module with respect to a Gelfand-Zeitlin type subalgebra of a completion of ${\mathcal E}'_n(q_1,q_2,q_3)$, which describes a deformation of the coset theory $\widehat{\mathfrak {gl}}_n/\widehat{\mathfrak {gl}}_{n-1}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2017
- DOI:
- arXiv:
- arXiv:1709.01592
- Bibcode:
- 2017arXiv170901592F
- Keywords:
-
- Mathematics - Quantum Algebra;
- Mathematical Physics;
- Mathematics - Representation Theory
- E-Print:
- Latex, 24 pages. Section 5.3 and Appendix are added