Geometric properties of Cesaro averaging operators
Abstract
In this paper, using positivity of trigonometric cosine and sine sums whose coefficients are generalization of Vietoris numbers, we find the conditions on the coefficient $\{a_k\}$ to characterize the geometric properties of the corresponding analytic function $f(z)=z+\displaystyle\sum_{k=2}^{\infty} a_kz^k$ in the unit disc $\mathbb{D}$. As an application we also find geometric properties of a generalized Cesàro type polynomials.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2017
- DOI:
- arXiv:
- arXiv:1708.00162
- Bibcode:
- 2017arXiv170800162S
- Keywords:
-
- Mathematics - Complex Variables;
- 30C45;
- 00A30
- E-Print:
- 15 pages