Revisiting The Riemann Zeta Function at Positive Even Integers
Abstract
Using Parseval's identity for the Fourier coefficients of $x^k$, we provide a new proof that $\zeta(2k)=\dfrac{(-1)^{k+1}B_{2k}(2\pi)^{2k}}{2(2k)!}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2017
- DOI:
- arXiv:
- arXiv:1707.04379
- Bibcode:
- 2017arXiv170704379A
- Keywords:
-
- Mathematics - Number Theory;
- 11B68
- E-Print:
- 6 pages, no figures