Möbius orthogonality for the Zeckendorf sum-of-digits function
Abstract
We show that the (morphic) sequence $(-1)^{s_\varphi(n)}$ is asymptotically orthogonal to all bounded multiplicative functions, where $s_\varphi$ denotes the Zeckendorf sum-of-digits function. In particular we have $\sum_{n<N} (-1)^{s_\varphi(n)} \mu(n) = o(N)$, that is, this sequence satisfies the Sarnak conjecture.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2017
- DOI:
- arXiv:
- arXiv:1706.09680
- Bibcode:
- 2017arXiv170609680D
- Keywords:
-
- Mathematics - Number Theory;
- Primary: 11A63;
- 11N37;
- Secondary: 11B25;
- 11L03
- E-Print:
- 15 pages