A Polycyclic Presentation for the q-Tensor Square of a Polycyclic Group
Abstract
Let $G$ be a group and $q$ a non-negative integer. We denote by $\nu^q(G)$ a certain extension of the $q$-tensor square $G \otimes^q G$ by $G \times G$. In this paper we derive a polycyclic presentation for $G \otimes^q G$, when $G$ is polycyclic, via its embedding into $\nu^q(G)$. Furthermore, we derive presentations for the $q$-exterior square $G \wedge^q G$ and for the second homology group $H_2(G, \mathbb{Z}_q).$ Additionally, we establish a criterion for computing the $q-$exterior centre $Z_q^\wedge (G)$ of a polycyclic group $G, $ which is helpful for deciding whether $G$ is capable modulo $q$. These results extend to all $q \geq 0$ existing methods due to Eick and Nickel for the case $q = 0$.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2017
- DOI:
- 10.48550/arXiv.1706.07683
- arXiv:
- arXiv:1706.07683
- Bibcode:
- 2017arXiv170607683R
- Keywords:
-
- Mathematics - Group Theory;
- 20F45;
- 20E26;
- 20F40
- E-Print:
- 21 pages