Joint Beamforming and Power-Splitting Control in Downlink Cooperative SWIPT NOMA Systems
Abstract
This paper investigates the application of simultaneous wireless information and power transfer (SWIPT) to cooperative non-orthogonal multiple access (NOMA). A new cooperative multiple-input single-output (MISO) SWIPT NOMA protocol is proposed, where a user with a strong channel condition acts as an energy-harvesting (EH) relay to help a user with a poor channel condition. The power splitting (PS) scheme is adopted at the EH relay. By jointly optimizing the PS ratio and the beamforming vectors, the design objective is to maximize the data rate of the "strong user" while satisfying the QoS requirement of the "weak user". It boils down to a challenging nonconvex problem. To resolve this issue, the semidefinite relaxation (SDR) technique is applied to relax the quadratic terms related with the beamformers, and then it is solved to its global optimality by two-dimensional exhaustive search. We prove the rank-one optimality, which establishes the equivalence between the relaxed problem and the original one. To further reduce the high complexity due to the exhaustive search, an iterative algorithm based on successive convex approximation (SCA) is proposed, which can at least attain its stationary point efficiently. In view of the potential application scenarios, e.g., IoT, the single-input single-output (SISO) case of the cooperative SWIPT NOMA system is also studied. The formulated problem is proved to be strictly unimodal with respect to the PS ratio. Hence, a golden section search (GSS) based algorithm with closed-form solution at each step is proposed to find the unique global optimal solution. It is worth pointing out that the SCA method can also converge to the optimal solution in SISO cases. In the numerical simulation, the proposed algorithm is numerically shown to converge within a few iterations, and the SWIPT-aided NOMA protocol outperforms the existing transmission protocols.
- Publication:
-
IEEE Transactions on Signal Processing
- Pub Date:
- September 2017
- DOI:
- arXiv:
- arXiv:1706.02851
- Bibcode:
- 2017ITSP...65.4874X
- Keywords:
-
- Computer Science - Information Theory
- E-Print:
- 13 pages, 10 figures, to appear in IEEE Transactions on Signal Processing (TSP), 2017